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Abstract

We study the concurrence of arbitrary multipartite mixed quantum states. An
explicit lower bound of the concurrence is derived, which detects quantum
entanglement of some states better than some separability criteria, and gives
sufficient conditions for distilling GHZ states from tripartite states. An
interesting relation between the lower bound of the concurrence for bipartite
states and for tripartite states has been presented.

PACS numbers: 03.67.−a, 02.20.Hj, 03.65.−w

1. Introduction

Quantum entanglement plays crucial roles in quantum information processing [1].
Entanglement of formation (EOF) [2] and concurrence [3, 4] are two well-defined quantitative
measures of quantum entanglement. For two-quibt systems it has been proved that EOF
is a monotonically increasing function of the concurrence and an elegant formula for the
concurrence was derived analytically by Wootters [5]. However with the increasing dimensions
of the subsystems the computation of EOF and concurrence become formidably difficult. A
few explicit analytic formulae for EOF and concurrence have been found only for some special
symmetric states [6–10].

The first analytic lower bound of concurrence that can be tightened by numerical
optimization over some parameters was derived in [11]. In [12, 13] analytic lower bounds on
EOF and concurrence for any dimensional mixed bipartite quantum states have been presented
by using the positive partial transposition (PPT) and realignment separability criteria. These
bounds are exact for some special classes of states and can be used to detect many bound
entangled states. In [14] another lower bound on EOF for bipartite states has been presented
from a new separability criterion [15]. A lower bound of concurrence based on local uncertainty
relations (LURs) criterion is derived in [16]. This bound is further optimized in [17]. The
lower bound of concurrence for tripartite systems has been studied in [18].
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In [19, 20] the authors presented lower bounds of concurrence for bipartite systems in
terms of a different approach. It has been shown that this lower bound has a close relationship
with the distillability of bipartite quantum states.

In this paper, we study the lower bound of concurrence for arbitrary multipartite quantum
systems by using the approach in [20]. Let H denote a d-dimensional vector space with basis
|i〉, i = 1, 2, . . . , d. An N-partite pure state in H ⊗ · · · ⊗ H is generally of the form

|�〉 =
d∑

i1,i2,...,iN=1

ai1,i2,...,iN |i1, i2, . . . , iN 〉, ai1,i2,...,iN ∈ C. (1)

Let α and α′ (resp. β and β ′) be subsets of the sub-indices of a, associated with the same
sub-Hilbert spaces but with different summing indices. α (or α′) and β (or β ′) span the whole
space of the given sub-indix of a. The generalized concurrence of |�〉 is then given by [4]

CN
d (|�〉) =

√√√√ d

2m(d − 1)

∑
p

d∑
{α,α′,β,β ′}

|aαβaα′β ′ − aαβ ′aα′β |2, (2)

where m = 2N−1 − 1,
∑

p stands for the summation over all possible combinations of the
indices of α and β.

For a mixed state ρ,

ρ =
∑

i

pi |ψi〉〈ψi |, pi � 0,
∑

i

pi = 1, (3)

the concurrence is defined by the convex roof

C(ρ) = min
∑

i

piC(|ψi〉), (4)

minimized over all possible pure state decompositions.

2. A lower bound of the concurrence of a multipartite quantum state

We first consider the tripartite case. A general pure state on H ⊗ H ⊗ H is of the form

|�〉 =
d∑

i,j,k=1

aijk|ijk〉, aijk ∈ C,

d∑
i,j,k=1

aijka
∗
ijk = 1 (5)

with

C3
d (|�〉)

=
√

d

6(d − 1)

∑
(|aijkapqm − aijmapqk|2 + |aijkapqm − aiqkapjm|2 + |aijkapqm − apjkaiqm|2)

(6)

or equivalently

C3
d (|�〉) =

√
d

6(d − 1)

(
3 − (

T rρ2
1 + T rρ2

2 + T rρ2
3

))
, (7)

where ρ1 = T r23(ρ), ρ2 = T r13(ρ), ρ3 = T r12(ρ) are the reduced density matrices of
ρ = |�〉〈�|.
2
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Define

C
12|3
αβ (|�〉) = |aijkapqm − aijmapqk|, C

13|2
αβ (|�〉) = |aijkapqm − aiqkapjm|,

C
23|1
αβ (|�〉) = |aijkapqm − apjkaiqm|,

(8)

where α and β of C
12|3
αβ (resp. C

13|2
αβ resp. C

23|1
αβ ) stand for the sub-indices of a associated with

the subspaces 1, 2 and 3 (resp. 1, 3 and 2 resp. 2, 3 and 1). Let Li1i2...iN denote the generators
of group SO

(
di1di2 . . . diN

)
associated with the subsystems i1, i2, . . . , iN . Then for a tripartite

pure state (5), one has

C3
d (|�〉) =

√√√√√ d

6(d − 1)

d2(d2−1)

2∑
α

d(d−1)

2∑
β

[(
C

12|3
αβ (|�〉))2

+
(
C

13|2
αβ (|�〉))2

+
(
C

23|1
αβ (|�〉))2]

=
√√√√ d

6(d − 1)

∑
αβ

[(∣∣〈�|S12|3
αβ |�∗〉∣∣)2

+
(∣∣〈�|S13|2

αβ |�∗〉∣∣)2
+

(∣∣〈�|S23|1
αβ |�∗〉∣∣)2]

,

(9)

where S
12|3
αβ = (

L12
α ⊗ L3

β

)
, S

13|2
αβ = (

L13
α ⊗ L2

β

)
and S

23|1
αβ = (

L1
β ⊗ L23

α

)
.

Theorem 1. For an arbitrary mixed state (3) in H ⊗ H ⊗ H , the concurrence C(ρ) satisfies

τ3(ρ) ≡ d

6(d − 1)

d2(d2−1)

2∑
α

d(d−1)

2∑
β

[(
C

12|3
αβ (ρ)

)2
+

(
C

13|2
αβ (ρ)

)2
+

(
C

23|1
αβ (ρ)

)2] � C2(ρ), (10)

where τ3(ρ) is a lower bound of C(ρ),

C
12|3
αβ (ρ) = max

{
0, λ(1)

12|3
αβ − λ(2)

12|3
αβ − λ(3)

12|3
αβ − λ(4)

12|3
αβ

}
, (11)

λ(1)
12|3
αβ , λ(2)

12|3
αβ , λ(3)

12|3
αβ , λ(4)

12|3
αβ are the square roots of the four nonzero eigenvalues, in

decreasing order, of the non-Hermitian matrix ρρ̃
12|3
αβ with ρ̃

12|3
αβ = S

12|3
αβ ρ∗S12|3

αβ . C
13|2
αβ (ρ) and

C
23|1
αβ (ρ) are defined in a similar way to C

12|3
αβ (ρ).

Proof. Set |ξi〉 = √
pi |ψi〉, xi

αβ = ∣∣〈ξi |S12|3
αβ |ξ ∗

i 〉∣∣, yi
αβ = ∣∣〈ξi |S13|2

αβ |ξ ∗
i 〉∣∣ and zi

αβ =∣∣〈ξi |S1|23
αβ |ξ ∗

i 〉∣∣. We have, from Minkowski inequality

C(ρ) = min
∑

i

√√√√ d

6(d − 1)

∑
αβ

[(
xi

αβ

)2
+

(
yi

αβ

)2
+

(
zi
αβ

)2]

� min

√√√√√ d

6(d − 1)

∑
αβ

(∑
i

[(
xi

αβ

)2
+

(
yi

αβ

)2
+

(
zi
αβ

)2] 1
2

)2

.

Noting that for nonnegative real variables xα, yα, zα and given X = ∑N
α=1 xα, Y =∑N

α=1 Yα and Z = ∑N
α=1 zα , by using Lagrange multipliers one obtains that the following

3
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inequality holds,

N∑
α=1

(
x2

α + y2
α + z2

α

) 1
2 � (X2 + Y 2 + Z2)

1
2 . (12)

Therefore we have

C(ρ) � min

√√√√√ d

6(d − 1)

∑
αβ

⎡⎣(∑
i

xi
αβ

)2

+

(∑
i

yi
αβ

)2

+

(∑
i

zi
αβ

)2
⎤⎦

�

√√√√√ d

6(d − 1)

∑
αβ

⎡⎣(
min

∑
i

xi
αβ

)2

+

(
min

∑
i

yi
αβ

)2

+

(
min

∑
i

zi
αβ

)2
⎤⎦. (13)

The values of C
12|3
αβ (ρ) ≡ min

∑
i x

i
αβ, C

13|2
αβ (ρ) ≡ min

∑
i y

i
αβ and C

23|1
αβ (ρ) ≡

min
∑

i z
i
αβ can be calculated by using the similar procedure in [5]. Here we compute the

value of C
12|3
αβ (ρ) in detail. The values of C

13|2
αβ (ρ) and C

23|1
αβ (ρ) can be obtained analogously.

Let λi and |χi〉 be eigenvalues and eigenvectors of ρ, respectively. Any decomposition of
ρ can be obtained from a unitary d3 ×d3 matrix Vij , |ξj 〉 = ∑d3

i=1 V ∗
ij (

√
λi |χi〉). Therefore one

has 〈ξi |S12|3
αβ |ξ ∗

j 〉 = (V YαβV T )ij , where the matrix Yαβ is defined by (Yαβ)ij = 〈χi |S12|3
αβ |χ∗

j 〉.
Namely C

12|3
αβ (ρ) = min

∑
i |[V YαβV T ]ii |, which has an analytical expression [5], C12|3

αβ (ρ) =
max

{
0, λ(1)

12|3
αβ − ∑

j>1 λ(j)
12|3
αβ

}
, where λ

12|3
αβ (k) are the square roots of the eigenvalues

of the positive Hermitian matrix YαβY
†
αβ , or equivalently the non-Hermitian matrix ρρ̃αβ , in

decreasing order. Here as the matrix S
12|3
αβ has d2 − 4 rows and d2 − 4 columns that are

identically zero, the matrix ρρ̃αβ has a rank no greater than 4, i.e., λ
12|3
αβ (j) = 0 for j � 5.

From equation (13) we have equation (10). �

Theorem 1 can be directly generalized to the arbitrary multipartite case.

Theorem 2. For an arbitrary N-partite state ρ ∈ H ⊗ H ⊗ · · · ⊗ H , the concurrence defined
in (4) satisfies

τN(ρ) ≡ d

2m(d − 1)

∑
p

∑
αβ

(C
p

αβ(ρ))2 � C2(ρ), (14)

where τN(ρ) is the lower bound of C2(ρ),
∑

p stands for the summation over all possible

combinations of the indices of α, β,C
p

αβ(ρ) = max
{
0, λ(1)

p

αβ − λ(2)
p

αβ − λ(3)
p

αβ −
λ(4)

p

αβ

}
, λ(i)

p

αβ, i = 1, 2, 3, 4, are the square roots of the four nonzero eigenvalues, in
decreasing order, of the non-Hermitian matrix ρρ̃

p

αβ where ρ̃
p

αβ = S
p

αβρ∗Sp

αβ .

3. The lower bound and separability

An N-partite quantum state ρ is fully separable if and only if there exist pi with pi �
0,

∑
i pi = 1 and pure states ρ

j

i = ∣∣ψj

i

〉〈
ψ

j

i

∣∣ such that

ρ =
∑

i

piρ
1
i ⊗ ρ2

i ⊗ · · · ⊗ ρN
i . (15)

4
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It is easily verified that for a fully separable multipartite state ρ, τN(ρ) = 0. Thus
τN(ρ) > 0 indicates that there must be some kinds of entanglement inside the quantum state,
which shows that the lower bound τN(ρ) can be used to recognize entanglement.

As an example we consider a tripartite quantum state [21], ρ = 1−p

8 I8 + p|W 〉〈W |,
where I8 is the 8 × 8 identity matrix, and |W 〉 = 1√

3
(|100〉 + |010〉 + |001〉) is the tripartite

W -state. Select an entanglement witness operator to be W = 1
2I8 − |GHZ〉〈GHZ|, where

|GHZ〉 = 1√
2
(|000〉 + |111〉) to be the tripartite GHZ-state. By computing T r{Wρ} < 0 the

entanglement of ρ is detected for 3
5 < p � 1 in [21]. In [22] the authors have obtained

the generalized correlation matrix criterion which says if an N-qubit quantum state is fully
separable then the inequality ‖T N‖KF � 1 must hold, where ‖T N‖KF = max

{∥∥T N
n

∥∥
KF

}
, T N

n

is a kind of matrix unfold of tα1α2···αN
defined by tα1α2···αN

= T r
{
ρσ (1)

α1
σ (2)

α2
· · · σ (N)

αN

}
and

σ (i)
αi

stands for the Pauli matrix. Now using the generalized correlation matrix criterion the
entanglement of ρ is detected for 0.3068 < p � 1. From our theorem, we have that the lower
bound τ3(ρ) > 0 for 0.2727 < p � 1. Therefore our bound detects entanglement better than
these two criteria in this case. If we replace W with the GHZ state in ρ, the criterion in [22]
detects the entanglement of ρ for 0.353 55 < p � 1, while τ3(ρ) detects, again better, the
entanglement for 0.2 < p � 1.

Nevertheless for PPT states ρ, we have τ3(ρ) = 0, which can be seen in the following
way. A density matrix ρ is called PPT if the partial transposition of ρ over any subsystem(s)
is still positive. Let ρTi denote the partial transposition with respect to the ith subsystem.
Assume that there is a PPT state ρ with τ(ρ) > 0. Then at least one term in (10), say C

12|3
α0β0

(ρ),

is not zero. Define ρα0β0 = L12
α0

⊗L3
β0

ρ
(
L12

α0
⊗L3

β0

)†
. By using the PPT property of ρ, we have

ρ
T3
α0β0

= L12
α0

⊗ (
L3

β0

)∗
ρT3

(
L12

α0

)† ⊗ (
L3

β0

)T � 0. (16)

Noting that both L12
α0

and L3
β0

are projectors to two-dimensional subsystems, ρα0β0 can be
considered as a 4 × 4 density matrix. While a PPT 4 × 4 density matrix ρα0β0 must be a
separable state, which contradicts with C

12|3
α0β0

(ρ) �= 0.

4. Comparison with the lower bound of the bipartite concurrence

The lower bound τ2 of concurrence for bipartite states has been obtained in [20]. For a bipartite
quantum state ρ in H ⊗ H , the concurrence C(ρ) satisfies

τ2(ρ) ≡ d

2(d − 1)

d(d−1)

2∑
m,n=1

C2
mn(ρ) � C2(ρ), (17)

where C2
mn(ρ) = max{0, λmn(1)−λmn(2)−λmn(3)−λmn(4)} with λmn(1), . . . , λmn(4) being

the square roots of the four nonzero eigenvalues, in decreasing order, of the non-Hermitian
matrix ρρ̃mn with ρ̃mn = (Lm ⊗ Ln)ρ

∗(Lm ⊗ Ln), Lm and Ln being the generators of SO(d).
τ3 is basically different from τ2 as τ3 characterizes also genuine tripartite entanglement that
cannot be described by bipartite decompositions. Nevertheless, there are interesting relations
between them.

Theorem 3. For any pure tripartite state (5), the following inequality holds:

τ2(ρ12) + τ2(ρ13) + τ2(ρ23) � 3τ3(ρ), (18)

where τ2 is the lower bound of bipartite concurrence (17), τ3 is the lower bound of tripartite
concurrence (10) and ρ12 = T r3(ρ), ρ13 = T r2(ρ), ρ23 = T r1(ρ), ρ = |�〉123〈�|.

5
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Proof. Since C2
αβ � (λαβ(1))2 �

∑4
i=1(λαβ(i))2 = T r(ρρ̃αβ) for ρ = ρ12, ρ = ρ13 and

ρ = ρ23, we have

τ2(ρ12) + τ2(ρ13) + τ2(ρ23) � d

2(d − 1)

⎛⎝ d(d−1)

2∑
α,β=1

T r(ρ12(̃ρ12)αβ) +

d(d−1)

2∑
α,β=1

T r(ρ13(̃ρ13)αβ)

+

d(d−1)

2∑
α,β=1

T r(ρ23(̃ρ23)αβ)

⎞⎠
= d

2(d − 1)

(
3 − T rρ2

1 − T rρ2
2 − T rρ2

3

) = 3C2(ρ) = 3τ3(ρ),

(19)

where we have used the similar analysis in [20, 25] to obtain the equality∑
α,β T r(ρ12(̃ρ12)αβ) = 1−T rρ2

1 −T rρ2
2 +T rρ2

3 ,
∑

α,β T r(ρ13(̃ρ13)αβ) = 1−T rρ2
1 +T rρ2

2 −
T rρ2

3 ,
∑

α,β T r(ρ23(̃ρ23)αβ) = 1 + T rρ2
1 − T rρ2

2 − T rρ2
3 . The last equality is due to the fact

that ρ is a pure state. �

In fact, the bipartite entanglement inside a tripartite state is useful for distilling maximally
entangled states. Assume that there are two of the qualities {τ(ρ12), τ (ρ13), τ (ρ23)} larger
than zero, say τ(ρ12) > 0 and τ(ρ13) > 0. According to [20], one can distill two maximal
entangled states |ψ12〉 and |ψ13〉 which belong to H1 ⊗H2 and H1 ⊗H3, respectively. In terms
of the result in [26], one can use them to produce a GHZ state.

5. Conclusions

We have studied the concurrence for multipartite quantum states and derived an explicit lower
bound of the concurrence. This bound can be also served as separability criterion. It detects
entanglement of some states better than some separability criteria. For tripartite PPT states
the lower bound is zero. The bound also gives sufficient conditions for distilling GHZ states
from tripartite states. Moreover it has been shown that there is an interesting relation, similar
to the monogamy inequalities and tangle [27], between the lower bound of the concurrence τ2

for bipartite states and τ3 for tripartite states. In addition, our results can be easily generalized
to the situation that all the subsystems have different dimensions. By simply neglecting the
coefficient related to the dimensions, d

2m(d−1)
, in the concurrence defined in (2), similar results

of theorems 2 and 3 hold for systems with different dimensions of subsystems.
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